NEMO oligomerization and its ubiquitin-binding properties

نویسندگان

  • Frank J. Ivins
  • Mark G. Montgomery
  • Susan J. M. Smith
  • Aylin C. Morris-Davies
  • Ian A. Taylor
  • Katrin Rittinger
چکیده

The IKK [IkappaB (inhibitory kappaB) kinase] complex is a key regulatory component of NF-kappaB (nuclear factor kappaB) activation and is responsible for mediating the degradation of IkappaB, thereby allowing nuclear translocation of NF-kappaB and transcription of target genes. NEMO (NF-kappaB essential modulator), the regulatory subunit of the IKK complex, plays a pivotal role in this process by integrating upstream signals, in particular the recognition of polyubiquitin chains, and relaying these to the activation of IKKalpha and IKKbeta, the catalytic subunits of the IKK complex. The oligomeric state of NEMO is controversial and the mechanism by which it regulates activation of the IKK complex is poorly understood. Using a combination of hydrodynamic techniques we now show that apo-NEMO is a highly elongated, dimeric protein that is in weak equilibrium with a tetrameric assembly. Interaction with peptides derived from IKKbeta disrupts formation of the tetrameric NEMO complex, indicating that interaction with IKKalpha and IKKbeta and tetramerization are mutually exclusive. Furthermore, we show that NEMO binds to linear di-ubiquitin with a stoichiometry of one molecule of di-ubiquitin per NEMO dimer. This stoichiometry is preserved in a construct comprising the second coiled-coil region and the leucine zipper and in one that essentially spans the full-length protein. However, our data show that at high di-ubiquitin concentrations a second weaker binding site becomes apparent, implying that two different NEMO-di-ubiquitin complexes are formed during the IKK activation process. We propose that the role of these two complexes is to provide a threshold for activation, thereby ensuring sufficient specificity during NF-kappaB signalling.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

NEMO specifically recognizes K63-linked poly-ubiquitin chains through a new bipartite ubiquitin-binding domain.

An important property of NEMO, the core element of the IKK complex involved in NF-kappaB activation, resides in its ability to specifically recognize poly-ubiquitin chains. A small domain called NOA/UBAN has been suggested to be responsible for this property. We recently demonstrated that the C-terminal Zinc Finger (ZF) of NEMO is also able to bind ubiquitin. We show here by ZF swapping and mut...

متن کامل

Analysis of nuclear factor-κB (NF-κB) essential modulator (NEMO) binding to linear and lysine-linked ubiquitin chains and its role in the activation of NF-κB.

Nuclear factor-κB (NF-κB) essential modulator (NEMO), a component of the inhibitor of κB kinase (IKK) complex, controls NF-κB signaling by binding to ubiquitin chains. Structural studies of NEMO provided a rationale for the specific binding between the UBAN (ubiquitin binding in ABIN and NEMO) domain of NEMO and linear (Met-1-linked) di-ubiquitin chains. Full-length NEMO can also interact with ...

متن کامل

Specific Recognition of Linear Ubiquitin Chains by NEMO Is Important for NF-κB Activation

Activation of nuclear factor-kappaB (NF-kappaB), a key mediator of inducible transcription in immunity, requires binding of NF-kappaB essential modulator (NEMO) to ubiquitinated substrates. Here, we report that the UBAN (ubiquitin binding in ABIN and NEMO) motif of NEMO selectively binds linear (head-to-tail) ubiquitin chains. Crystal structures of the UBAN motif revealed a parallel coiled-coil...

متن کامل

A20 inhibits LUBAC-mediated NF-κB activation by binding linear polyubiquitin chains via its zinc finger 7.

Linear polyubiquitination of proteins has recently been implicated in NF-κB signalling and is mediated by the linear ubiquitin chain assembly complex (LUBAC), consisting of HOIL-1, HOIP and Sharpin. However, the mechanisms that regulate linear ubiquitination are still unknown. Here, we show that A20 is rapidly recruited to NEMO and LUBAC upon TNF stimulation and that A20 inhibits LUBAC-induced ...

متن کامل

Structural basis for recognition of diubiquitins by NEMO.

NEMO is the regulatory subunit of the IkappaB kinase (IKK) in NF-kappaB activation, and its CC2-LZ region interacts with Lys63 (K63)-linked polyubiquitin to recruit IKK to receptor signaling complexes. In vitro, CC2-LZ also interacts with tandem diubiquitin. Here we report the crystal structure of CC2-LZ with two dimeric coiled coils representing CC2 and LZ, respectively. Surprisingly, mutagene...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 421  شماره 

صفحات  -

تاریخ انتشار 2009